Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Output Grouping using Dirichlet Mixtures of Linear Gaussian State-Space Models

MPG-Autoren
/persons/resource/persons83858

Chiappa,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chiappa, S. (2007). Output Grouping using Dirichlet Mixtures of Linear Gaussian State-Space Models. Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis (ISPA 2007), 446-451.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CBF5-5
Zusammenfassung
We consider a model to cluster the components of a vector time-series. The task is to assign each component of the vector time-series to a single cluster, basing this assignment on the simultaneous dynamical similarity of the component to other components in the cluster. This is in contrast to the more familiar task of clustering a set of time-series based on global measures of their similarity. The model is based on a Dirichlet Mixture of Linear Gaussian State-Space models (LGSSMs), in which each LGSSM is treated with a prior to encourage the simplest explanation. The resulting model is approximated using a ‘collapsed’ variational Bayes implementation.