Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Physical self-motion facilitates object recognition, but does not enable view-independence

MPG-Autoren
/persons/resource/persons84252

Teramoto,  W
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Teramoto, W., & Riecke, B. (2007). Physical self-motion facilitates object recognition, but does not enable view-independence. In 4th Symposium on Applied Perception in Graphics and Visualization (APGV 2007) (pp. 142-142). New York, NY, USA: ACM Press.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-CCC5-7
Zusammenfassung
It is well known that people have difficulties in recognizing an object from novel views as compared to learned views, resulting in increased response times and/or errors. This so-called view-dependency has been confirmed by many studies. In the natural environment, however, there are two ways of changing views of an object: one is to rotate an object in front of a stationary observer (object-movement), the other is for the observer to move around a stationary object (observer-movement). Note that almost all previous studies are based on the former procedure. Simons et al. [2002] criticized previous studies in this regard and examined the difference between object- and observer-movement directly. As a result, Simons et al. [2002] reported the elimination of this view-dependency when novel views resulted from observer-movement, instead of object-movement. They suggest the contribution of extra-retinal (vestibular and proprioceptive) information to object recognition. Recently, however, Zhao et al. [2007] repor ted that the observeramp;amp;lsquo;s movement from one view to another only decreased view-dependency without fully eliminating it. Furthermore, even this effect vanished for rotations of 90° instead of 50°. Larger rotations were not tested. The aim of the present study was to clarify the underlying mechanism of this phenomenon and to investigate larger angles of view change (45-180°, in 45° steps).