日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging

MPS-Authors
/persons/resource/persons84402

Svensson J, Henning,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Wilm, B., Svensson J, Henning, A., Pruessmann KP, Boesiger, P., & Kollias, S. (2007). Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magnetic Resonance in Medicine, 57(3), 625–630. doi:10.1002/mrm.21167.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-CE6F-C
要旨
A spin-echo single-shot echo-planar imaging (SS-EPI) technique with a reduced field of view (FOV) in the phase-encoding direction is presented that simultaneously reduces susceptibility effects and motion artifacts in diffusion-weighted (DW) imaging (DWI) of the spinal cord at a high field strength (3T). To minimize aliasing, an outer volume suppression (OVS) sequence was implemented. Effective fat suppression was achieved with the use of a slice-selection gradient-reversal technique. The OVS was optimized by numerical simulations with respect to T1 relaxation times and B1 variations. The optimized sequence was evaluated in vitro and in vivo. In simulations the optimized OVS showed suppression to <0.25 and ∼3 in an optimal and worst-case scenario, respectively. In vitro measurements showed a mean residual signal of <0.95 ± 0.42 for all suppressed areas. In vivo acquisition with 0.9 × 1.05 mm2 in-plane resolution resulted in artifact-free images. The short imaging time of this technique makes it promising for clinical studies.