日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

報告書

Modeling data using directional distributions: Part II

MPS-Authors
/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Sra, S., Jain, P., & Dhillon, I.(2007). Modeling data using directional distributions: Part II (TR-07-05).


引用: https://hdl.handle.net/11858/00-001M-0000-0013-CEBF-9
要旨
High-dimensional data is central to most data mining applications, and only recently has it been modeled via directional distributions. In [Banerjee et al., 2003] the authors introduced the use of the von Mises-Fisher (vMF) distribution for modeling high-dimensional directional data, particularly for text and gene expression analysis. The vMF distribution is one of the simplest directional distributions. TheWatson, Bingham, and Fisher-Bingham distributions provide distri- butions with an increasing number of parameters and thereby commensurately increased modeling power. This report provides a followup study to the initial development in [Banerjee et al., 2003] by presenting Expectation Maximization (EM) procedures for estimating parameters of a mixture of Watson (moW) distributions. The numerical challenges associated with parameter estimation for both of these distributions are significantly more difficult than for the vMF distribution. We develop new numerical approximations for estimating the parameters permitting us to model real- life data more accurately. Our experimental results establish that for certain data sets improved modeling power translates into better results.