Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Estimating Predictive Variances with Kernel Ridge Regression

MPG-Autoren
/persons/resource/persons83855

Chapelle,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cawley, G., Talbot, N., & Chapelle, O. (2006). Estimating Predictive Variances with Kernel Ridge Regression. In J. Quinonero-Candela, I. Dagan, B. Magnini, & F. D‘Alché-Buc (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment: First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 (pp. 56-77). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D237-D
Zusammenfassung
In many regression tasks, in addition to an accurate estimate of the conditional mean of the target distribution, an indication of the
predictive uncertainty is also required. There are two principal sources
of this uncertainty: the noise process contaminating the data and the
uncertainty in estimating the model parameters based on a limited sample
of training data. Both of them can be summarised in the predictive
variance which can then be used to give confidence intervals. In this paper,
we present various schemes for providing predictive variances for
kernel ridge regression, especially in the case of a heteroscedastic regression,
where the variance of the noise process contaminating the data is
a smooth function of the explanatory variables. The use of leave-one-out
cross-validation is shown to eliminate the bias inherent in estimates of
the predictive variance. Results obtained on all three regression tasks
comprising the predictive uncertainty challenge demonstrate the value
of this approach.