Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

Network-based de-noising improves prediction from microarray data

There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kato, T., Murata, Y., Miura, K., Asai, K., Horton, P., Tsuda, K., et al. (2006). Network-based de-noising improves prediction from microarray data. BMC Bioinformatics, 7(Supplement 1): S4, 1-11.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-D26B-8
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson‘s correlation coefficient between the true and predicted respon
se values as the prediction performance. De-noising improves the prediction performance for 65 of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the
input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.