Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Differences in processing of 3-D shape from multiple cues in monkey cortex revealed by fMRI

MPG-Autoren
/persons/resource/persons84209

Sereno,  ME
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83787

Augath,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logotethis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sereno, M., Augath, M., & Logotethis, N. (2005). Differences in processing of 3-D shape from multiple cues in monkey cortex revealed by fMRI. Talk presented at 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005). Washington, DC, USA.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D3D9-A
Zusammenfassung
Previous work using fMRI in anesthetized monkeys to investigate the representation of 3-D objects and surfaces suggests a set of candidate areas in monkey cortex for cue-invariant 3-D shape processing (Sereno et al., Neuron, 2002). The present study examines activation overlap for 3-D surface shape defined with 3 different cues by directly comparing activation for the same 3-D shapes in the same monkey subjects. Stimuli consisted of a set of 3-D surfaces defined by dynamic (random dots with motion parallax) and static (shading and contour) shape cues. Each shape defined by a particular cue was paired with a control stimulus consisting of a scrambled or disrupted cue gradient to diminish or abolish an impression of depth. Activation from a comparison of intact to control stimuli revealed regions of common activation (e.g., in superior temporal and intra-parietal sulci) for shape defined by the 3 different cues. However, significant differences between the dynamic and static cues emerged. The extent and strength of activation was greater in area MT for dynamic compared to static cues; whereas the opposite was true in area V4. In addition, while there was significant overlap across the cues in regions of the STS anterior to area MT (FST and mid-anterior STS), in each of these regions there was a greater number of voxels active for shape-from-motion stimuli in the fundus vs. the more lateral aspect of the ventral bank. In turn, the lateral aspect of the ventral bank had a greater number of voxels active for shape-from-shading and -contour compared to shape-from-motion stimuli. Between the regions activated primarily by dynamic or static cues there was a region of convergence activated by all the cues.