English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Haller, S., Bartsch, A., Radü, E., Klarhöfer, M., Seifritz, E., & Scheffler, K. (2005). Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI. Magnetic Resonance Materials in Physics, Biology and Medicine, 18(5), 263-271. doi:10.1007/s10334-005-0010-2.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-D3ED-D
Abstract
Conventional blood oxygenation level-dependent (BOLD) based functional magnetic resonance imaging (fMRI) is accompanied by substantial acoustic gradient noise. This noise can influence the performance as well as neuronal activations. Conventional fMRI typically has a pulsed noise component, which is a particularly efficient auditory stimulus. We investigated whether the elimination of this pulsed noise component in a recent modification of continuous-sound fMRI modifies neuronal activations in a cognitively demanding non-auditory working memory task. Sixteen normal subjects performed a letter variant n-back task. Brain activity and psychomotor performance was examined during fMRI with continuous-sound fMRI and conventional fMRI. We found greater BOLD responses in bilateral medial frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, left hippocampus, right superior frontal gyrus, right precuneus and right cingulate gyrus with continuous-sound compared to conventional fMRI. Conversely, BOLD responses were greater in bilateral cingulate gyrus, left middle and superior frontal gyrus and right lingual gyrus with conventional compared to continuous-sound fMRI. There were no differences in psychomotor performance between both scanning protocols. Although behavioral performance was not affected, acoustic gradient noise interferes with neuronal activations in non-auditory cognitive tasks and represents a putative systematic confound.