Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

The role of binocular cues in scaling the retinal velocities of objects moving in space

MPG-Autoren
/persons/resource/persons84307

Welchman,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84071

Maier,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  H
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Welchman, A., Maier, S., & Bülthoff, H. (2005). The role of binocular cues in scaling the retinal velocities of objects moving in space. Poster presented at Fifth Annual Meeting of the Vision Sciences Society (VSS 2005), Sarasota, FL, USA.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D487-7
Zusammenfassung
The retinal velocity of an object moving in space depends on its distance from us. Thus, to interpret retinal motions the visual system must estimate an object's distance. Which sources of information are used? Here we consider the use of horizontal binocular disparity and vergence cues to distance. Specifically, we investigated whether disparity and vergence cues provide a depth distance estimate required to judge the physical velocity of objects moving at different distances (velocity constancy). Observers (n=6) viewed computer-rendered objects (either wire-frame spheres or small points) translating in the fronto-parallel plane. A trial consisted of two objects presented sequentially; observers judged whether the first or second moved faster. A staircase procedure was used to adjust the velocity of the second object to obtain the point of subjective equality between the two presented motions. Trials for objects moving with different velocities, directions and displacements were randomly interleaved. Velocity judgments were made for objects presented at different distances defined by disparity, vergence angle and changing size cues. Judgments of perceived velocity were systematically affected by the depth distance between the objects, with velocity matches close to those expected for perfect velocity constancy. This was true even for small points, suggesting that, in contrast a previous report (McKee Welch, Vision Research, 29, 553), disparity-defined depth can provide a sufficient distance cue for judgments of object velocity. However, settings made under conditions of different states of eye vergence had little effect on velocity matches. These results support a constancy mechanism for velocity that takes disparity-defined depth as an input, but that is little affected by static vergence posture.