Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Face Detection: Efficient and Rank Deficient

MPG-Autoren
/persons/resource/persons84012

Kienzle,  W
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83791

BakIr,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83919

Franz,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kienzle, W., BakIr, G., Franz, M., & Schölkopf, B. (2005). Face Detection: Efficient and Rank Deficient. Advances in Neural Information Processing Systems, 673-680.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D51D-B
Zusammenfassung
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.