English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Hilbertian Metrics and Positive Definite Kernels on Probability Measures

MPS-Authors
/persons/resource/persons83958

Hein,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hein, M., & Bousquet, O. (2005). Hilbertian Metrics and Positive Definite Kernels on Probability Measures. In R. Cowell, & Z. Ghahramani (Eds.), AISTATS 2005: Tenth International Workshop onArtificial Intelligence and Statistics (pp. 136-143). The Society for Artificial Intelligence and Statistics.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D68F-5
Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and two image classification problems.