English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

How are complex cell properties adapted to the statistics of natural stimuli?

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kording, K., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91(1), 206-212. doi:10.​1152/​jn.​00149.​2003.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DA31-6
Abstract
Sensory areas should be adapted to the properties of their natural stimuli. What are the underlying rules that match the properties of complex cells in primary visual cortex to their natural stimuli? To address this issue, we sampled movies from a camera carried by a freely moving cat, capturing the dynamics of image motion as the animal explores an outdoor environment. We use these movie sequences as input to simulated neurons. Following the intuition that many meaningful high-level variables, e.g., identities of visible objects, do not change rapidly in natural visual stimuli, we adapt the neurons to exhibit firing rates that are stable over time. We find that simulated neurons, which have optimally stable activity, display many properties that are observed for cortical complex cells. Their response is invariant with respect to stimulus translation and reversal of contrast polarity. Furthermore, spatial frequency selectivity and the aspect ratio of the receptive field quantitatively match the experimentally observed characteristics of complex cells. Hence, the population of complex cells in the primary visual cortex can be described as forming an optimally stable representation of natural stimuli.