Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning from Labeled and Unlabeled Data Using Random Walks

MPG-Autoren
/persons/resource/persons84330

Zhou,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhou, D., & Schölkopf, B. (2004). Learning from Labeled and Unlabeled Data Using Random Walks. In C. Rasmussen, H. Bülthoff, B. Schölkopf, & M. Giese (Eds.), Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, August 30 - September 1, 2004 (pp. 237-244). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-F390-8
Zusammenfassung
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled,
and the remaining points are unlabeled. The goal is to predict the
labels of the unlabeled points. Any supervised learning algorithm
can be applied to this problem, for instance, Support Vector
Machines (SVMs). The problem of our interest is if we can
implement a classifier which uses the unlabeled data information
in some way and has higher accuracy than the classifiers which use
the labeled data only. Recently we proposed a simple algorithm,
which can substantially benefit from large amounts of unlabeled
data and demonstrates clear superiority to supervised learning
methods. In this paper we further investigate the algorithm using
random walks and spectral graph theory, which shed light on the
key steps in this algorithm.