English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning from Labeled and Unlabeled Data Using Random Walks

MPS-Authors
/persons/resource/persons84330

Zhou,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, D., & Schölkopf, B. (2004). Learning from Labeled and Unlabeled Data Using Random Walks. In C. Rasmussen, H. Bülthoff, B. Schölkopf, & M. Giese (Eds.), Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, August 30 - September 1, 2004 (pp. 237-244). Berlin, Germany: Springer.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-F390-8
Abstract
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled, and the remaining points are unlabeled. The goal is to predict the labels of the unlabeled points. Any supervised learning algorithm can be applied to this problem, for instance, Support Vector Machines (SVMs). The problem of our interest is if we can implement a classifier which uses the unlabeled data information in some way and has higher accuracy than the classifiers which use the labeled data only. Recently we proposed a simple algorithm, which can substantially benefit from large amounts of unlabeled data and demonstrates clear superiority to supervised learning methods. In this paper we further investigate the algorithm using random walks and spectral graph theory, which shed light on the key steps in this algorithm.