English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

MPS-Authors
/persons/resource/persons84331

Zien,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., et al. (2003). Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy. European Journal of Neuroscience: European Neuroscience Association, 18(10), 2792-2802. doi:10.1111/j.1460-9568.2003.02993.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DAC1-F
Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.