Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Forward propagating reinforcement learning: biologically plausible learning method for multi-layer networks

MPG-Autoren
/persons/resource/persons84301

Watanabe,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Watanabe, M., Masuda, T., & Kazuyuki, A. (2003). Forward propagating reinforcement learning: biologically plausible learning method for multi-layer networks. Biosystems, 71(1-2), 213-220. doi:10.1016/S0303-2647(03)00127-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DB9F-8
Zusammenfassung
We introduce a biologically plausible method of implementing reinforcementlearning to multi-layer neural networks. The key idea is to spatially localize the synaptic modulation induced by reinforcement signals, proceeding downstream from the initial layer to the final layer. Since reinforcement signals are known to be broadcast signals in the actual brain, we need two key assumptions, inhibitory backward connections and bypass to output units, to spatially localize the effect of delayed reinforcement without breaking the basic laws of neurophysiology.