English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Learning with Local and Global Consistency

MPS-Authors
/persons/resource/persons84330

Zhou,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84035

Lal,  TN
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84311

Weston,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, D., Bousquet, O., Lal, T., Weston, J., & Schölkopf, B.(2003). Learning with Local and Global Consistency (112). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DC51-C
Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to
predict the label of the unlabeled points. A principled clue to
solve such a learning problem is the consistency assumption that a
classifying function should be sufficiently smooth with respect to
the structure revealed by these known labeled and unlabeled points. We present a simple
algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a
number of classification problems and demonstrates effective use of
unlabeled data.