Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Classification in a Normalized Feature Space using Support Vector Machines

MPG-Autoren
/persons/resource/persons83943

Graf,  ABA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Graf, A., Smola, A., & Borer, S. (2003). Classification in a Normalized Feature Space using Support Vector Machines. IEEE Transactions on Neural Networks, 14(3), 597-605. doi:10.1109/TNN.2003.811708.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DC7D-C
Zusammenfassung
This paper discusses classification using support vector machines in a normalized feature space. We consider both normalization in input space and in feature space. Exploiting the fact that in this setting all points lie on the surface of a unit hypersphere we replace the optimal separating hyperplane by one that is symmetric in its angles, leading to an improved estimator. Evaluation of these considerations is done in numerical experiments on two real-world datasets. The stability to noise of this offset correction is subsequently investigated as well as its optimality.