English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of the non-steroidal anti-inflammatory drug niflumic acid in humans: a combined 19F-MRS in vivo and in vitro study

MPS-Authors
/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bilecen, D., Schulte A, Kaspar A, Küstermann E, Seelig J, Elverfeldt, D., & Scheffler, K. (2003). Detection of the non-steroidal anti-inflammatory drug niflumic acid in humans: a combined 19F-MRS in vivo and in vitro study. NMR in Biomedicine, 16(3), 144-151. doi:10.1002/nbm.820.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DC81-F
Abstract
Abstract This study describes for the first time results of a 19F-MRS study on humans exposed to the fluorinated non-steroidal anti-inflammatory drug niflumic acid. The accumulation and elimination of this commercially available selective prostaglandin synthase inhibitor is studied after an oral bolus in the human liver, in blood plasma and in urine samples. The in vivo spectra of the liver display two resonances with a similar increase in signal intensity during the investigation period of 240 min. One resonance refers to the parent compound niflumic acid (P), whereas the second resonance corresponds to a metabolite (M1) formed by the biotransformation by liver enzymes. The spectroscopic comparison with model compounds suggests 4′-hydroxyniflumic acid as the metabolite. During the entire experiment the concentration ratios of these resonances (P/M1) ranged between 0.7 and 0.9, indicating a high metabolite concentration most probably due to an efficient first pass metabolism. Both resonances (P, M1) were observed in the in vitro study of the blood plasma samples after plasma protein denaturation. However, in comparison to the liver spectra, the amount of the metabolite M1 is very small with a P/M1-ratio of 36.6 after 90 min and 16.1 after the end of measurement. This finding suggests an efficient biliary excretion of the metabolite M1, which bypasses the blood circulation system. Both resonances are also identified in the native urine samples. The signal intensity of the parent compound dominates the spectra of all urine samples, whereas the signal intensity of M1 increases slowly reaching a similar value to the parent compound P at the end of the measurement. This observation demonstrates an effective renal elimination of niflumic acid and suggests the existence of an enterohepatic circuit with a re-entry mechanism for the biliary excreted metabolite M1. In the urine spectra, an additional metabolite M2 is found. This resonance exhibits a low but constant signal intensity. The chemical origin of this metabolite is unclear.