English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Feature selection and transduction for prediction of molecular bioactivity for drug design

MPS-Authors
/persons/resource/persons84311

Weston,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83855

Chapelle,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83901

Elisseeff,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., & Schölkopf, B. (2003). Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics, 19(6), 764-771. doi:10.1093/bioinformatics/btg054.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DCA5-1
Abstract
Motivation: In drug discovery a key task is to identify characteristics that separate active (binding) compounds from inactive (non-binding) ones. An automated prediction system can help reduce resources necessary to carry out this task.

Results: Two methods for prediction of molecular bioactivity for drug design are introduced and shown to perform well in a data set previously studied as part of the KDD (Knowledge Discovery and Data Mining) Cup 2001. The data is characterized by very few positive examples, a very large number of features (describing three-dimensional properties of the molecules) and rather different distributions between training and test data. Two techniques are introduced specifically to tackle these problems: a feature selection method for unbalanced data and a classifier which adapts to the distribution of the the unlabeled test data (a so-called transductive method). We show both techniques improve identification performance and in conjunction provide an improvement over using only one of the techniques. Our results suggest the importance of taking into account the characteristics in this data which may also be relevant in other problems of a similar type.