English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Very Slow Activity Fluctuations in Monkey Visual Cortex: Implications for Functional Brain Imaging

MPS-Authors
/persons/resource/persons84050

Leopold,  DA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Leopold, D., Murayama, Y., & Logothetis, N. (2003). Very Slow Activity Fluctuations in Monkey Visual Cortex: Implications for Functional Brain Imaging. Cerebral Cortex, 13(4), 422-433. doi:10.1093/cercor/13.4.422.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DCAF-D
Abstract
We examined fluctuations in band-limited power (BLP) of local field potential (LFP) signals recorded from multiple electrodes in visual cortex of the monkey during different behavioral states. We asked whether such signals demonstrated coherent fluctuations over time-scales of seconds and minutes, and would thus serve as good candidates for direct comparison with data obtained from functional magnetic resonance imaging (fMRI). We obtained the following results. (i) The BLP of the local field displayed fluctuations at many time-scales, with particularly large amplitude at very low frequencies (<0.1 Hz). (ii) These fluctuations exhibited high coherence between electrode pairs, particularly for BLP signals derived from the gamma (g) frequency range. (iii) Coherence in the BLP, unlike that in the raw LFP, did not fall off sharply as a function of cortical distance. (iv) The structure and coherence of BLP changes were highly similar under distinctly different behavioral states. These results demonstrate the existence of widespread coherent activity fluctuations in the brain of the awake monkey over very long time-scales. We propose that such signals may make a significant contribution to the high variability observed in the time course of physiological signals, including those measured with functional imaging techniques. The results are discussed in the context of combined fMRI/electrophysiological recordings.