Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Semi-Supervised Learning through Principal Directions Estimation

MPG-Autoren
/persons/resource/persons83855

Chapelle,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84311

Weston,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ICML-2003-Chapelle_.pdf
(beliebiger Volltext), 125KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chapelle, O., Schölkopf, B., & Weston, J. (2003). Semi-Supervised Learning through Principal Directions Estimation. In ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning & Data Mining (pp. 1-7).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-DDB6-8
Zusammenfassung
We describe methods for taking into account unlabeled data in the training of a kernel-based classifier, such as a Support Vector
Machines (SVM). We propose two approaches utilizing unlabeled points
in the vicinity of labeled ones. Both of the approaches effectively
modify the metric of the pattern space, either by using non-spherical
Gaussian density estimates which are determined using EM, or by
modifying the kernel function using displacement vectors computed from
pairs of unlabeled and labeled points. The latter is linked to
techniques for training invariant SVMs. We present experimental
results indicating that the proposed technique can lead to substantial
improvements of classification accuracy.