English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey

MPS-Authors
/persons/resource/persons84130

Pauls,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83787

Augath,  MA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84262

Trinath,  T
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84147

Prause,  BA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saleem, K., Pauls, J., Augath, M., Trinath, T., Prause, B., Hashikawa, T., et al. (2002). Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey. Neuron, 34(5), 685-700. doi:10.1016/S0896-6273(02)00718-3.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DFB6-7
Abstract
Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronalconnections of the basal ganglia of the monkey. Mn2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.