Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stability and Generalization

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bousquet, O., & Elisseeff, A. (2002). Stability and Generalization. The Journal of Machine Learning Research, 2, 499-526.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-E0C2-2
Zusammenfassung
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds
based on the empirical error and the leave-one-out error. The
methods we use can be applied in the regression framework as well
as in the classification one when the classifier is obtained by
thresholding a real-valued function. We study the stability
properties of large classes of learning algorithms such as
regularization based algorithms. In particular we focus on Hilbert
space regularization and Kullback-Leibler regularization. We
demonstrate how to apply the results to SVM for regression and
classification.