Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Characteristic motion of human face and human form

MPG-Autoren
/persons/resource/persons84018

Knappmeyer,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84258

Thornton,  IM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knappmeyer, B., Thornton, I., & Bülthoff, H. (2001). Characteristic motion of human face and human form. Perception, 30(ECVP Abstract Supplement), 33.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-E246-A
Zusammenfassung
Do object representations contain information about characteristic motion as well as characteristic form? To address this question we recorded face and body motion of human actors and applied these patterns to computer models. During an incidental learning phase observers were asked to make trait judgments about these animated faces (experiment 1) or characters (experiment 2). During training, the faces and characters always moved with the motion of one particular actor. For example, face A was always animated with actor A's motion, and face B with actor B's motion. In tests, stimuli were either consistent (face A/actor A) or inconsistent (face A/actor B) relative to training. In addition, we systematically introduced ambiguity to the form of the stimuli (eg morphing between face A and face B). Results indicate that as form becomes less informative, observers' responses become biased by the incidentally learned motion patterns. We conclude that information about characteristic motion seems to be part of the representation of these objects. As shape and motion information can be combined independently with this technique, future studies will allow us to quantify the relative importance of characteristic motion versus characteristic form.