English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Perception, representation and recognition: A holistic view of recognition

MPS-Authors
/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Christou, C., & Bülthoff, H. (2000). Perception, representation and recognition: A holistic view of recognition. Spatial Vision, 13(2-3), 265-275. doi:10.1163/156856800741081.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E3FC-6
Abstract
It is clear that humans have mental representations of their spatial environments and that these representations are useful, if not essential, in a wide variety of cognitive tasks such as identification of landmarks and objects, guiding actions and navigation and in directing spatial awareness and attention. Determining the properties of mental representation has long been a contentious issue (see Pinker, 1984). One method of probing the nature of human representation is by studying the extent to which representation can surpass or go beyond the visual(or sensory) experience from which it derives. From a strictly empiricist standpoint what is not sensed cannot be represented; except as a combination of things that have been experienced. But perceptual experience is always limited by our view of the world and the properties of our visual system. It is therefore not surprising when human representation is found to be highly dependent on the initial viewpoint of the observer and on any shortcomings thereof. However, representation is not a static entity; it evolves with experience. The debate as to whether human representation of objects is view-dependent or view-invariant that has dominated research journals recently may simply be a discussion concerning how much information is available in the retinal image during experimental tests and whether this information is sufficient for the task at hand. Here we review an approach to the study of the development of human spatial representation under realistic problem solving scenarios. This is facilitated by the use of realistic virtual environments, exploratory learning and redundancy in visual detail.