Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion

MPG-Autoren
/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Smola, A., & Schölkopf, B. (1998). On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. Algorithmica, 22(1-2), 211-231. doi:10.1007/PL00013831.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E7F5-5
Zusammenfassung
We present a kernel-based framework for pattern recognition, regression estimation, function approximation, and multiple operator inversion. Adopting a regularization-theoretic framework, the above are formulated as constrained optimization problems. Previous approaches such as ridge regression, support vector methods, and regularization networks are included as special cases. We show connections between the cost function and some properties up to now believed to apply to support vector machines only. For appropriately chosen cost functions, the optimal solution of all the problems described above can be found by solving a simple quadratic programming problem.