Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Limiting factors for the detection of orientation


Zanker,  JM
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Department Structure and Function of Natural Nerve-Net , Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Zanker, J. (1998). Limiting factors for the detection of orientation. Perception, 27(2), 167-181. doi:10.1068/p270167.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E91D-E
First steps of visual-information processing in primates are characterised by a highly ordered representation of the outside world on the cortex. Two prominent features of cortical organisation are the retinotopic mapping of position in the visual field on the first stages of the visual stream, and the systematic variation of orientation preference in the same areas. In an attempt to understand the relation of position and orientation representation, we need to know the minimum spatial requirements for orientation detection. In the present paper, the spatial limits for detecting orientation are analysed by simulating simple orientation filters and testing the ability of human observers to detect the orientation of small lines at various positions in the visual field. At sufficiently high contrast levels, the minimum physical length of a line to discriminate orientation differences of 45°–90° is not constant when presented at various eccentricities, but covaries inversely with the cortical magnification factor. In consequence, a line needs to correspond to about 0.2 mm of cortical surface, independently of the actual eccentricity at which the stimulus is presented, in order to allow observers to recognise its orientation. This has consequences for our understanding of orientation detection, (i) In combination with simulation experiments, it becomes clear that the elementary process underlying orientation detection is a local operation, which seems to focus on small regions compared with cortical receptive fields, (ii) With respect to the number of inputs to the visual cortex, the performance of this local operation approaches the physical limits, requiring hardly more than three-four input LGN axons to be activated for detecting the orientation of a highly visible line segment. Comparing these spatial characteristics with the receptive fields of orientation-sensitive neurons in the primate visual system could suggest new insights into the neuronal circuits underlying orientation mapping in the human cortex.