English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparing support vector machines with Gaussian kernels to radial basis function classifiers

MPS-Authors
/persons/resource/persons84193

Schölkopf,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., et al. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758-2765. doi:10.1109/78.650102.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E9B4-7
Abstract
The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by X-means clustering, and the weights are computed using error backpropagation. We consider three machines, namely, a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the United States postal service database of handwritten digits, the SV machine achieves the highest recognition accuracy, followed by the hybrid system. The SV approach is thus not only theoretically well-founded but also superior in a practical application.