English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of cholinergic modulation on responses of neocortical neurons to fluctuating input

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tang, A., Bartels, A., & Sejnowski, T. (1997). Effects of cholinergic modulation on responses of neocortical neurons to fluctuating input. Cerebral Cortex, 7(6), 502-509. doi:10.1093/cercor/7.6.502.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E9E4-C
Abstract
Neocortical neurons in vivo are spontaneously active and intracellular recordings have revealed strongly fluctuating membrane potentials arising from the irregular arrival of excitatory and inhibitory synaptic potentials. In addition to these rapid fluctuations, more slowly varying influences from diffuse activation of neuromodulatory systems alter the excitability of cortical neurons by modulating a variety of potassium conductances. In particular, acetylcholine, which effects learning and memory, reduces the slow alterhyperpolarization, which contributes to spike frequency adaptation. We used whole-cell patch-clamp recordings of pyramidal neurons in neocortical slices and computational simulations to show, first, that when fluctuating inputs were added to a constant current pulse, spike frequency adaptation was reduced as the amplitude of the fluctuations was increased. High-frequency, high-amplitude fluctuating inputs that resembled in vivo conditions exhibited only weak spike frequency adaptation. Second, bath application of carbachol, a cholinergic agonist, significantly increased the firing rate in response to a fluctuating input but minimally displaced the spike times by < 3 ms, comparable to the spike jitter observed when a visual stimulus is repeated under in vivo conditions. These results suggest that cholinergic modulation may preserve information encoded in precise spike timing, but not in interspike intervals, and that cholinergic mechanisms other than those involving adaptation may contribute significantly to cholinergic modulation of learning and memory.