English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Features of the representation space for 3-D objects

MPS-Authors
/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83840

Bülthoff,  I
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bülthoff, H., Edelman, S., & Bülthoff, I. (1996). Features of the representation space for 3-D objects. Perception, 25(ECVP Abstract Supplement), 49-50.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-EB34-A
Abstract
To explore the nature of the representation space of 3-D objects, we studied human performance in forced-choice classification of objects composed of four geon-like parts, emanating from a common centre. The two class prototypes were distinguished by qualitative contrasts (cross-section shape; bulge/waist), and by metric parameters (degree of bulge/waist, taper ratio). Subjects were trained to discriminate between the two prototypes (shown briefly, from a number of viewpoints, in stereo) in a 1-interval forced-choice task, until they reached a 90 correct-response performance level. In experiment 1, eleven subjects were tested on shapes obtained by varying the prototypical parameters both orthogonally (Ortho), and in parallel (Para) to the line connecting the prototypes in the parameter space. For the eight subjects who performed above chance, the error rate increased with the Ortho parameter-space displacement between the stimulus and the corresponding prototype: F1,68=3.6, p<0.06 (the effect of the Para displacement was marginal). Clearly, the parameter-space location of the stimuli mattered more than the qualitative contrasts (which were always present). To find out whether both prototypes or just the nearest neighbour of the test shape influenced the decision, in experiment 2 eight new subjects were tested on a fixed set of shapes, while the test-stage distance between the two classes assumed one of three values (Far, Intermediate, or Near). For the six subjects who performed above chance, the error rate (on physically identical stimuli) in the Near condition was higher than in the other two conditions: F1,89=3.7, p<0.06. The results of the two experiments contradict the prediction of theories that postulate exclusive reliance on qualitative contrasts, and support the notion of a metric representation space with the subjects' performance determined by distances to more than one reference point or prototype (cf Edelman, 1995 Minds and Machines 5 45 - 68).