日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Gaussian Processes for Regression

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Williams, C., & Rasmussen, C. (1996). Gaussian Processes for Regression. In D., Touretzky, M., Mozer, & M., hasselmo (Eds.), Advances in Neural Processing Systems 8 (pp. 514-520). Cambridge, MA, USA: MIT Press.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-EB66-9
要旨
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior over functions. We investigate the use of a Gaussian process prior over functions, which permits the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.