Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Figure-ground discrimination by relative movement in the visual system of the fly Part II: Towards the neural circuitry

MPG-Autoren
/persons/resource/persons84160

Reichardt,  W
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84913

Poggio,  T
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons246807

Hausen,  K
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reichardt, W., Poggio, T., & Hausen, K. (1983). Figure-ground discrimination by relative movement in the visual system of the fly Part II: Towards the neural circuitry. Biological Cybernetics, 46(1 Supplement), 1-30. doi:10.1007/BF00595226.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-F077-B
Zusammenfassung
A moving object can be separated from its surround on the basis of motion information alone. It has been known for some time that various species and especially the housefly can discriminate relative motion of an object and its background, even when the two have an identical texture. An earlier paper (Reichardt and Poggio, 1979) has analyzed on the basis of behavioural experiments the main features of the algorithm used by the fly to separate figure from ground. This paper (a) proposes the basic structure of a neuronal circuitry possibly underlying the detection of discontinuities in the optical flow by the visual system of the houseflyMusca; (b) compares detailed predictions of the model circuitry with old and new behavioural experiments onMusca (measuring its attempts to fixate an object), and (c) studies the neuronal realization of the model circuitry in terms of electrophysiological recordings from the lobula plate horizontal cells of the blowfly Calliphora.