Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

In vivo MRI analysis of depth-dependent ultrastructure in human knee cartilage at 7 T

MPG-Autoren
/persons/resource/persons20053

Trampel,  Robert
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20055

Turner,  Robert
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Garnov, N., Gründer, W., Thörmer, G., Trampel, R., Turner, R., Kahn, T., et al. (2013). In vivo MRI analysis of depth-dependent ultrastructure in human knee cartilage at 7 T. NMR in Biomedicine, 26(11), 1412-1419. doi:10.1002/nbm.2968.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B463-A
Zusammenfassung
Signal intensities of T2-weighted magnetic resonance images depend on the local fiber arrangement in hyaline cartilage. The aims of this study were to determine whether angle-sensitive MRI at 7 T can be used to quantify the cartilage ultrastructure of the knee in vivo and to assess potential differences with age.

Ten younger (21–30 ) and ten older (55–76 years old) healthy volunteers were imaged with a T2-weighted spin-echo sequence in a 7 T whole-body MRI. A “fascicle” model was assumed to describe the depth-dependent fiber arrangement of cartilage. The R/T boundary positions between radial and transitional zones were assessed from intensity profiles in small regions of interest in the femur and tibia, and normalized to cartilage thickness using logistic curve fits.

The quality of our highly resolved (0.3 × 0.3 × 1.0 mm3) MR cartilage images were high enough for quantitative analysis (goodness of fit R2 = 0.91 ± 0.09). Between younger and older subjects, normalized positions of the R/T boundary, with value 0 at the bone–cartilage interface and 1 at the cartilage surface, were significantly (p < 0.05) different in femoral (0.51 ± 0.12 versus 0.41 ± 0.10), but not in tibial cartilage (0.65 ± 0.11 versus 0.57 ± 0.09, p = 0.119). Within both age groups, differences between femoral and tibial R/T boundaries were significant.

Using a fascicle model and angle-sensitive MRI, the depth-dependent anisotropic fiber arrangement of knee cartilage could be assessed in vivo from a single 7 T MR image. The derived quantitative parameter, thickness of the radial zone, may serve as an indicator of the structural integrity of cartilage. This method may potentially be suitable to detect and monitor early osteoarthritis because the progressive disintegration of the anisotropic network is also indicative of arthritic changes in cartilage.