English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative adsorbate structure determination under catalytic reaction conditions

MPS-Authors
/persons/resource/persons21761

Kreikemeyer-Lorenzo,  Dagmar
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22188

Unterberger,  Werner
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21378

Blume,  Raoul
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21590

Hävecker,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22013

Rocha,  Tulio
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevB.87.125420.pdf
(Publisher version), 405KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kreikemeyer-Lorenzo, D., Unterberger, W., Blume, R., Hävecker, M., Rocha, T., Knop-Gericke, A., et al. (2013). Quantitative adsorbate structure determination under catalytic reaction conditions. Physical Review B, 87(12): 125420. doi:10.1103/PhysRevB.87.125420.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-FCB1-7
Abstract
Current methods allow quantitative local structure determination of adsorbate geometries on surfaces in ultrahigh vacuum (UHV) but are incompatible with the higher pressures required for a steady-state catalytic reactions. Here we show that photoelectron diffraction can be used to determine the structure of the methoxy and formate reaction intermediates during the steady-state oxidation of methanol over Cu(110) by taking advantage of recent instrumental developments to allow near-ambient pressure x-ray photoelectron spectroscopy. The local methoxy site differs from that under static UHV conditions, attributed to the increased surface mobility and dynamic nature of the surface under reaction conditions.