Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins

MPG-Autoren

Peters,  Carsten
Max Planck Institute of Molecular Physiology, Max Planck Society;

Wagner,  Melanie
Max Planck Institute of Molecular Physiology, Max Planck Society;

Völkert,  Martin
Max Planck Institute of Molecular Physiology, Max Planck Society;

/persons/resource/persons98735

Waldmann,  Herbert
Abt. IV: Chemische Biologie, Max Planck Institute of Molecular Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Peters, C., Wagner, M., Völkert, M., & Waldmann, H. (2002). Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins. Naturwissenschaften, 89(9): 1, pp. 381-390. Retrieved from http://dx.doi.org/10.1007/s00114-002-0354-7.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-0E0B-3
Zusammenfassung
We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.