English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus

MPS-Authors
/persons/resource/persons97416

Simon-Rosin,  U.
Molecular Plant Nutrition, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;
Biophysical Analysis, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97453

Udvardi,  M. K.
Molecular Plant Nutrition, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Rogato, A., D'Apuzzo, E., Barbulova, A., Omrane, S., Stedel, C., Simon-Rosin, U., et al. (2008). Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus. Plant Molecular Biology, 68(6), 585-595. doi:10.1007/s11103-008-9394-5.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-26BA-E
Abstract
Plant ammonium transporters of the AMT1 family are involved in N-uptake from the soil and ammonium transport, and recycling within the plant. Although AMT1 genes are known to be expressed in nitrogen-fixing nodules of legumes, their precise roles in this specialized organ remain unknown. We have taken a reverse-genetic approach to decipher the physiological role of LjAMT1;1 in Lotus japonicus nodules. LjAMT1;1 is normally expressed in both the infected zone and the vascular tissue of Lotus nodules. Inhibition of LjAMT1;1 gene expression, using an antisense gene construct driven by a leghemoglobin promoter resulted in a substantial reduction of LjAMT1;1 transcript in the infected tissue but not the vascular bundles of transgenic plants. As a result, the nitrogen-fixing activity of nodules was partially impaired and nodule number increased compared to control plants. Expression of LjAMT1;1-GFP fusion protein in plant cells indicated a plasma-membrane location for the LjAMT1;1 protein. Taken together, the results are consistent with a role of LjAMT1;1 in retaining ammonium derived from symbiotic nitrogen fixation in plant cells prior to its assimilation.