English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism

MPS-Authors
/persons/resource/persons97481

Willmitzer,  L.
Small Molecules, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97193

Hesse,  H.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97197

Hoefgen,  R.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nikiforova, V. J., Gakiere, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H., et al. (2004). Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. In JOURNAL OF EXPERIMENTAL BOTANY (pp. 1799-1808).


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-2C99-4
Abstract
A genomics analysis on sulphur metabolism has been conducted at the level of transcriptomics and metabolomics. The analysis of these data after applying bioinformatic tools is to reveal novel findings. The findings are discussed and the knowledge obtained from comparable analyses on sulphur metabolism and other plant nutrient genomic studies is reviewed. The analysis of the response of the transcriptome and metabolome to sulphur deprivation in the growth medium provides a tool set for the analysis of comparable genomics studies of other nutrients. The goal of this 'sulphobolomics' (i.e. sulphur genomics and metabolome analysis) approach, and of other investigations, is to describe in a holistic way the biochemical, molecular, and physiological response of a plant to nutrient starvation, here sulphate, or, more generally, to alterations and imbalances in nutrient availability. Eventually, this analysis will provide a case study for a systems biology approach.