English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae)

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Laitinen, R. A., Broholm, S., Albert, V. A., Teeri, T. H., & Elomaa, P. (2006). Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biology, 6, 11. doi:10.1186/1471-2229-6-11.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-3397-4
Abstract
BACKGROUND: The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae) consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia. RESULTS: Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors. CONCLUSION: Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation.