English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Phasic modulation of somatosensory perception by means of transcranial alternating current stimulation

MPS-Authors
/persons/resource/persons22872

Gundlach,  Christopher
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19892

Nierhaus,  Till
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19994

Sehm,  Bernhard
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gundlach, C., Müller, M., Nierhaus, T., Villringer, A., & Sehm, B. (2013). Phasic modulation of somatosensory perception by means of transcranial alternating current stimulation. Talk presented at 5th International Conference on Non-invasive Brain Stimulation. Leipzig, Germany. 2013-03-19 - 2013-03-21.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-14F0-1
Abstract
Introduction Ongoing oscillations are associated with brain functions such as somatosensory perception. For example, the amplitude of the sensorimotor mu rhythm can be linked to the perception of near-detection-threshold somatosensory stimuli (Linkenkaer-Hansen et al., 2004). Furthermore the phase of neuronal oscillations affects the perception of near-threshold stimuli (Busch et al., 2009). Transcranial alternating current stimulation (tACS) may offer the possibility to modulate oscillatory activity. Recently it was shown that tACS increased the amplitude of visual alpha oscillations (Zaehle et al., 2010) and had a phase dependent influence on auditory perception (Neuling et al., 2012). Objectives We examined the effect of tACS applied at participants’ individual mu frequency on threshold levels of somatosensory perception. We hypothesized that (a) tACS modulates somatosensory perception thresholds and (b) perception thresholds vary as a function of the phase of tACS. Methods In a randomized, single-blinded, crossover design, 17 participants (mean age: 27; female: 10) underwent a combined EEG/tACS experiment in two separate sessions (real or sham tACS). In the beginning, subject’s individual mu frequency was derived from the event-related desynchronization over the left somatosensory cortex (S1) induced by electric pulses to the right index finger. Subsequently, somatosensory detection thresholds were determined in a block of 16 minutes using an adaptive staircase procedure of weak electric stimuli that were presented with electrodes at the right index finger. During the second third of the task 5 minutes of tACS was applied at the individual mu frequency in a bilateral montage over both primary somatosensory cortices (S1). For sham, 30 s of 1 mA random noise stimulation was applied. Behavioral performance was assessed with respect to (i) an average effect of tACS as compared to sham and (ii) a modulation dependent on the tACS phase. Results No differences in the average somatosensory perception thresholds were observed between real and sham stimulation. However, during tACS, somatosensory detection thresholds changed as a function of the phase of tACS. Thresholds were differing maximally for stimuli presented at opposite phases in both maxima of the tACS signal curve. Conclusion We conclude that tACS applied at the individual mu frequency over S1 is capable of modulating perception of near-threshold somatosensory stimuli in a phase-dependent manner. Our findings suggest that functionally relevant intrinsic oscillations may be modulated using non-invasive brain stimulation. References Busch, N. A., Dubois, J., & VanRullen, R. (2009). The Phase of Ongoing EEG Oscillations Predicts Visual Perception. The Journal of Neuroscience, 29(24), 7869-7876. Linkenkaer-Hansen, K., Nikulin, V. V., Palva, S., Ilmoniemi, R. J., & Palva, J. M. (2004). Prestimulus Oscillations Enhance Psychophysical Performance in Humans. J. Neurosci., 24(45), 10186-10190. Neuling, T., Rach, S., Wagner, S., Wolters, C. H., & Herrmann, C. S. (2012). Good vibrations: Oscillatory phase shapes perception. NeuroImage, 63(2), 771-778. Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE, 5(11), e13766.