English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Incrementally Maintaining the Number of l-cliques

MPS-Authors
/persons/resource/persons44519

Grandoni,  Fabrizio
Discrete Optimization, MPI for Informatics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grandoni, F.(2002). Incrementally Maintaining the Number of l-cliques (MPI-I-2002-1-002). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6C9B-B
Abstract
The main contribution of this paper is an incremental algorithm to update the number of $l$-cliques, for $l \geq 3$, in which each node of a graph is contained, after the deletion of an arbitrary node. The initialization cost is $O(n^{\omega p+q})$, where $n$ is the number of nodes, $p=\lfloor \frac{l}{3} \rfloor$, $q=l \pmod{3}$, and $\omega=\omega(1,1,1)$ is the exponent of the multiplication of two $n x n$ matrices. The amortized updating cost is $O(n^{q}T(n,p,\epsilon))$ for any $\epsilon \in [0,1]$, where $T(n,p,\epsilon)=\min\{n^{p-1}(n^{p(1+\epsilon)}+n^{p(\omega(1,\epsilon,1)-\epsilon)}),n^{p \omega(1,\frac{p-1}{p},1)}\}$ and $\omega(1,r,1)$ is the exponent of the multiplication of an $n x n^{r}$ matrix by an $n^{r} x n$ matrix. The current best bounds on $\omega(1,r,1)$ imply an $O(n^{2.376p+q})$ initialization cost, an $O(n^{2.575p+q-1})$ updating cost for $3 \leq l \leq 8$, and an $O(n^{2.376p+q-0.532})$ updating cost for $l \geq 9$. An interesting application to constraint programming is also considered.