English

# Item

ITEM ACTIONSEXPORT Released Report

#### Incrementally Maintaining the Number of l-cliques

##### MPS-Authors
/persons/resource/persons44519 Grandoni,  Fabrizio
Discrete Optimization, MPI for Informatics, Max Planck Society;

##### External Ressource
No external resources are shared
##### Fulltext (public)
There are no public fulltexts stored in PuRe
##### Supplementary Material (public)
There is no public supplementary material available
##### Citation

Grandoni, F.(2002). Incrementally Maintaining the Number of l-cliques (MPI-I-2002-1-002). Saarbrücken: Max-Planck-Institut für Informatik.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6C9B-B
##### Abstract
The main contribution of this paper is an incremental algorithm to update the number of $l$-cliques, for $l \geq 3$, in which each node of a graph is contained, after the deletion of an arbitrary node. The initialization cost is $O(n^{\omega p+q})$, where $n$ is the number of nodes, $p=\lfloor \frac{l}{3} \rfloor$, $q=l \pmod{3}$, and $\omega=\omega(1,1,1)$ is the exponent of the multiplication of two $n x n$ matrices. The amortized updating cost is $O(n^{q}T(n,p,\epsilon))$ for any $\epsilon \in [0,1]$, where $T(n,p,\epsilon)=\min\{n^{p-1}(n^{p(1+\epsilon)}+n^{p(\omega(1,\epsilon,1)-\epsilon)}),n^{p \omega(1,\frac{p-1}{p},1)}\}$ and $\omega(1,r,1)$ is the exponent of the multiplication of an $n x n^{r}$ matrix by an $n^{r} x n$ matrix. The current best bounds on $\omega(1,r,1)$ imply an $O(n^{2.376p+q})$ initialization cost, an $O(n^{2.575p+q-1})$ updating cost for $3 \leq l \leq 8$, and an $O(n^{2.376p+q-0.532})$ updating cost for $l \geq 9$. An interesting application to constraint programming is also considered.