Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transients in global Ca2+ concentration induced by electrical activity in a giant nerve terminal.

MPG-Autoren
/persons/resource/persons15570

Neher,  E.
Emeritus Group of Membrane Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15912

Taschenberger,  H.
Research Group of Activity-Dependent and Developmental Plasticity at the Calyx of Held, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neher, E., & Taschenberger, H. (2013). Transients in global Ca2+ concentration induced by electrical activity in a giant nerve terminal. Journal of Physiliogy, 591(13), 3189-3195. doi:10.1113/jphysiol.2012.248617.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-618A-1
Zusammenfassung
Giant nerve terminals offer a unique opportunity to learn about dynamic changes in intracellular global Ca2+ concentration ([Ca2+](i)) because this quantity can be measured precisely with indicator dyes and the composition of the intra-terminal ionic milieu can be controlled. We review here recent literature on [Ca2+](i) signalling in the calyx of Held and discuss what these measurements can tell us about endogenous Ca2+ buffers and Ca2+ extrusion mechanisms. We conclude that in spite of the favourable experimental conditions, some unresolved questions still remain regarding absolute values for the Ca2+-binding ratio, the affinity of the basic fixed buffer and the Ca2+ affinities of the major endogenous Ca2+ binding proteins. Uncertainties about some of these presynaptic properties, including the roles of Mg2+ and ATP (as a Mg2+ buffer), however, extend to the point that mechanisms controlling the decay of [Ca2+](i) signals in unperturbed terminals may have to be reconsidered.