Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding the Structure and Electronic Properties of Molecular Crystals under Pressure: Application of Dispersion Corrected DFT to Oligoacenes

MPG-Autoren
/persons/resource/persons22175

Tkatchenko,  Alexandre
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schatschneider, B., Monaco, S., Tkatchenko, A., & Liang, J.-J. (2013). Understanding the Structure and Electronic Properties of Molecular Crystals under Pressure: Application of Dispersion Corrected DFT to Oligoacenes. The Journal of Physical Chemistry A, 117(34), 8323-8331. doi:10.1021/jp406573n.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-1A91-5
Zusammenfassung
Oligoacenes form a fundamental class of polycyclic aromatic hydrocarbons (PAH) which have been extensively explored for use as organic (semi) conductors in the bulk phase and thin films. For this reason it is important to understand their electronic properties in the condensed phase. In this investigation, we use density functional theory with Tkatchenko-Scheffler dispersion correction to explore several crystalline oligoacenes (naphthalene, anthracene, tetracene, and pentacene) under pressures up to 25 GPa in an effort to uncover unique electronic/optical properties. Excellent agreement with experiment is achieved for the pressure dependence of the crystal structure unit cell parameters, densities, and intermolecular close contacts. The pressure dependence of the band gaps is investigated as well as the pressure induced phase transition of tetracene using both generalized gradient approximated and hybrid functionals. It is concluded that none of the oligoacenes investigated become conducting under elevated pressures, assuming that the molecular identity of the system is maintained.