Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nanoscopy with more than 100,000 'doughnuts'.

MPG-Autoren
/persons/resource/persons98970

Chmyrov,  A.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15318

Keller,  J.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons39409

Grotjohann,  T.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons98968

Ratz,  M.
Research Group of Mitochondrial Structure and Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons98972

d'Este,  E.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15269

Jakobs,  S.
Research Group of Mitochondrial Structure and Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15024

Eggeling,  C.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.       
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1824844.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

1824844_Supplement_1.pdf
(Ergänzendes Material), 8MB

Zitation

Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d'Este, E., Jakobs, S., et al. (2013). Nanoscopy with more than 100,000 'doughnuts'. Nature methods, 10, 737-740. doi:10.1038/nmeth.2556.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-1ADC-0
Zusammenfassung
We show that nanoscopy based on the principle called RESOLFT (reversible saturable optical fluorescence transitions) or nonlinear structured illumination can be effectively parallelized using two incoherently superimposed orthogonal standing light waves. The intensity minima of the resulting pattern act as 'doughnuts', providing isotropic resolution in the focal plane and making pattern rotation redundant. We super-resolved living cells in 120 μm × 100 μm–sized fields of view in <1 s using 116,000 such doughnuts