English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nanoscopy with more than 100,000 'doughnuts'.

MPS-Authors
/persons/resource/persons98970

Chmyrov,  A.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15318

Keller,  J.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons39409

Grotjohann,  T.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons98968

Ratz,  M.
Research Group of Mitochondrial Structure and Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons98972

d'Este,  E.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15269

Jakobs,  S.
Research Group of Mitochondrial Structure and Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15024

Eggeling,  C.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

Fulltext (public)

1824844.pdf
(Publisher version), 2MB

Supplementary Material (public)

1824844_Supplement_1.pdf
(Supplementary material), 8MB

Citation

Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d'Este, E., Jakobs, S., et al. (2013). Nanoscopy with more than 100,000 'doughnuts'. Nature methods, 10, 737-740. doi:10.1038/nmeth.2556.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-1ADC-0
Abstract
We show that nanoscopy based on the principle called RESOLFT (reversible saturable optical fluorescence transitions) or nonlinear structured illumination can be effectively parallelized using two incoherently superimposed orthogonal standing light waves. The intensity minima of the resulting pattern act as 'doughnuts', providing isotropic resolution in the focal plane and making pattern rotation redundant. We super-resolved living cells in 120 μm × 100 μm–sized fields of view in <1 s using 116,000 such doughnuts