Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A computational basis for higher-dimensional computational geometry

MPG-Autoren
/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45100

Näher,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45391

Schirra,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45446

Seel,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45646

Uhrig,  Christian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MPI-96-1-016.pdf
(beliebiger Volltext), 47MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mehlhorn, K., Näher, S., Schirra, S., Seel, M., & Uhrig, C.(1996). A computational basis for higher-dimensional computational geometry (MPI-I-1996-1-016). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-A163-1
Zusammenfassung
We specify and implement a kernel for computational geometry in arbitrary finite dimensional space. The kernel provides points, vectors, directions, hyperplanes, segments, rays, lines, affine transformations, and operations connecting these types. Points have rational coordinates, hyperplanes have rational coefficients, and analogous statements hold for the other types. We therefore call our types \emph{rat\_point}, \emph{rat\_vector}, \emph{rat\_direction}, \emph{rat\_hyperplane}, \emph{rat\_segment}, \emph{rat\_ray} and \emph{rat\_line}. All geometric primitives are \emph{exact}, i.e., they do not incur rounding error (because they are implemented using rational arithmetic) and always produce the correct result. To this end we provide types \emph{integer\_vector} and \emph{integer\_matrix} which realize exact linear algebra over the integers. The kernel is submitted to the CGAL-Consortium as a proposal for its higher-dimensional geometry kernel and will become part of the LEDA platform for combinatorial and geometric computing.