Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry - Cigarette smoke

MPG-Autoren
/persons/resource/persons101383

Xu,  X.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dallüge, J., van Stee, L. L. P., Xu, X., Williams, J., Beens, J., Vreuls, R. J. J., et al. (2002). Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry - Cigarette smoke. Journal of Chromatography A, 974(1-2), 169-184.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-9070-6
Zusammenfassung
The potential and current limitations of comprehensive two- dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOF-MS) for the analysis of very complex samples were studied with the separation of cigarette smoke as an example. Because of the large number of peaks in such a GCxGC chromatogram it was not possible to perform manual data processing. Instead, the GC-TOF-MS software was used to perform peak finding, deconvolution and library search in an automated fashion; this resulted in a peak table containing some 30 000 peaks. Mass spectral match factors were used to evaluate the library search results. The additional use of retention indices and information from second-dimension retention times can substantially improve the identification. The combined separation power of the GCxGC-TOF-MS system and the deconvolution algorithm provide a system with a most impressive separation power. (C) 2002 Elsevier Science B.V. All rights reserved.