日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

報告書

The thickness of a minor-excluded class of graphs

MPS-Authors

Jünger,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Mutzel,  Petra
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Odenthal,  Thomas
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Scharbrodt,  Mark
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

95-1-027.pdf
(全文テキスト(全般)), 4MB

付随資料 (公開)
There is no public supplementary material available
引用

Jünger, M., Mutzel, P., Odenthal, T., & Scharbrodt, M.(1995). The thickness of a minor-excluded class of graphs (MPI-I-1995-1-027). Saarbrücken: Max-Planck-Institut für Informatik.


引用: https://hdl.handle.net/11858/00-001M-0000-0014-A1D5-0
要旨
The thickness problem on graphs is $\cal NP$-hard and only few results concerning this graph invariant are known. Using a decomposition theorem of Truemper, we show that the thickness of the class of graphs without $G_{12}$-minors is less than or equal to two (and therefore, the same is true for the more well-known class of the graphs without $K_5$-minors). Consequently, the thickness of this class of graphs can be determined with a planarity testing algorithm in linear time.