English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interactions of Aromatic Radicals with Water

MPS-Authors
/persons/resource/persons58496

Crespo-Otero,  Rachel
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons101523

Bravo-Rodriguez,  Kenny
Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58421

Benighaus,  Tobias
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons101503

Sánchez-García,  Elsa
Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

cphc_201200840_sm_miscellaneous_information.pdf
(Supplementary material), 737KB

Citation

Crespo-Otero, R., Bravo-Rodriguez, K., Roy, S., Benighaus, T., Thiel, W., Sander, W., et al. (2013). Interactions of Aromatic Radicals with Water. ChemPhysChem, 14(4), 805-811. doi:10.1002/cphc.201200840.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-A3F8-1
Abstract
The interactions of the benzyl radical (1), the anilinyl radical (2), and the phenoxyl radical (3) with water are investigated using density functional theory (DFT). In addition, we report dispersion-corrected DFT-D molecular dynamics simulations on these three systems and a matrix isolation study on 1–water. The radicals 1–3 form an interesting series with the number of lone pairs increasing from none to two. The anilinyl and benzyl radicals can act as Lewis base through their unpaired electrons, the lone pairs of the heteroatoms, or the doubly occupied π orbitals of the aromatic system. Matrix isolation experiments provide evidence for the formation of a π complex between 1 and water. By combining computational and experimental techniques we identify the possible interactions between the aromatic radicals 1–3 and water, predict the structure and vibrational spectra of the resulting complexes, and analyze the effects of substitution and temperature.