English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High plant species richness indicates management-related disturbances rather than the conservation status of forests

MPS-Authors
/persons/resource/persons62409

Hessenmöller,  Dominik
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62544

Schöning,  Ingo       
Soil and Ecosystem Processes, Dr. M. Schrumpf, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62549

Schulze,  Ernst Detlef
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boch, S., Prati, D., Müller, J., Socher, S., Baumbach, H., Buscot, F., et al. (2013). High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic and Applied Ecology, 14(6), 496-505. doi:10.1016/j.baae.2013.06.001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-4956-1
Abstract
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.